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From Dürer’s Magic Square to Klumpenhouwer Tesseracts:
On MELENCOLIA (2013) by Philippe Manoury

Magic squares stand as some of the most popular objects in recreational
mathematics. They probably first appeared in China – the earliest unambiguous
reference dates from the first century CE (Cammann 1960, pp. 116–18).
Although their origins were intrinsically rooted in religious and esoteric
contexts, magic squares gradually became an autonomous mathematical entity.
In particular, several Arabic treatises from the Middle Ages propounded fairly
accurate algorithms which demonstrated how to build them (Sesiano 2017).
These sources probably had an impact in Europe during the Renaissance, where
they penetrated by way of Andalusia (Comes 2016), and later in the specific field
of compositional practices.

As the history of Western music reveals, many musicians of different periods,
including those living in recent times, have allowed mysticism and occultism to
nourish their theoretical conceptions. It is not surprising, therefore, that some
of these musicians have dealt with magic squares for esoteric purposes (Hasler
2007). Conversely, many other composers have regarded tabulated data as a
device which could help them clarify and objectify their musical practice. The
source of this readiness is partly to be found in the research in combinatorics and
music which arose in Europe during the seventeenth and eighteenth centuries
(Knobloch 2001). To these combinatorial devices belongs dice music, which was
mainly an amusement for dilettantes during the second half of the eighteenth
century (Hedges 1978). Tabulated diagrams became less anecdotal, however,
with the end of the common practice period, after which composers sought
new methods to stimulate their creative thoughts. Latin and magic squares,
as well as other related numerical constructions, are therefore found in several
composers’ sketches of the twentieth and twenty-first centuries. A representative
but non-exhaustive list of European composers includes Anton Webern, Ernst
Krenek, Olivier Messiaen, Bruno Maderna, Pierre Boulez, Michel Philippot,
Peter Maxwell Davies, Hans Zender and Walter Zimmermann (for an account,
see Besada and Andreatta 2021).

Our own research follows in the steps of the analysts who studied the
works of these composers. We will focus here on Philippe Manoury’s Third
String Quartet – with crotales – Melencolia (d’après Dürer) (2013), a work
inspired by Albrecht Dürer’s engraving of the same name (Plate 1). Close to
its upper right corner, the artist included a magic square – henceforth Dürer’s
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Plate 1 Albrecht Dürer, Melencolia I [Colour figure can be viewed at
wileyonlinelibrary.com]

square – which displays the date of the artwork (1514) in the middle of its
bottom row. The square is also reproduced in the prologue of Manoury’s score,
a fact which suggests a much deeper relationship between the engraving and the
music than simply a paratextual (Genette 1982) connection of the titles. As our
analyses will demonstrate, Manoury’s use of Dürer’s square could be regarded as
a particular case of musical ekphrasis (Goehr 2010), following a large tradition
of musicians’ comments on paintings, from the past to the twentieth and twenty-
first centuries (Bruhn 2000 and 2004).

Among Manoury’s sketches of the formal structure of Melencolia, there is a
document (Plate 2) which labels three basic categories, namely carré magique
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FROM DÜRER’S MAGIC SQUARE TO KLUMPENHOUWER TESSERACTS 3

Plate 2 Detail of Manoury’s formal planning for Melencolia. Reproduced by kind
permission of the author

(magic square), grammaire (grammar) and échelles (scales).1 Our analyses will
focus exclusively on the musical outcomes derived from the magic square
categories, that is, Dürer’s square and the several modifications carried out on
it by the composer. Manoury mostly used the tabulated data for generating
collections of pitch classes – often tetrads – and sometimes exploited it for other
purposes, such as deriving rhythmic patterns. In comparison, Manoury’s logic in
dealing with grammars and scales was quite dissimilar in terms of formalism and
musical result. So, we have decided to set aside specific comments on these latter
categories – although the grammars stand as an important technical feature of
his recent music (Manoury 2012 and 2013) – and instead to concentrate on a
discussion of the pitches explicitly related to Manoury’s tabulated numbers.2

We acknowledge however that, although the three categories mentioned are
first presented in the score as juxtaposed entities over time, they are sometimes
merged, and their perceptual implications are far from straightforward.

Our argument is structured as follows. First, we will provide a set of
mathematical definitions and properties of certain numerical squares, which are
necessary for our theoretical approach and analysis. Second, we will discuss the
initial reasons which lead us to consider K-nets – and some extensions of these
– as the most suitable analytical tool for reaching our goal. Our discussion will
touch on the issue of Perle–Lansky cycles: important resemblances with our case
study will partially orientate our analytical steps. Third, we will dive into the
actual analysis of several passages of Melencolia which involve the magic square
category, drawing upon Manoury’s sketch material. Our analysis will follow
a cumulative complexification process by looking deeply into three particular
passages which rely on the aforementioned category. They will demonstrate
that, despite the compositional surface diversity, there are strong structural
relationships leading to formal unity. Fourth, we will step back and provide
an abstract summary of the main features brought to the fore by our analysis
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Fig. 1 Dürer’s magic square

while aiming to enlarge their potential scope. In doing so, we will also suggest
possible compositional extensions of the techniques under scrutiny. Finally, we
will introduce a second level of abstraction with an eye to re-evaluating the
pertinence of transformational tools for our case study.

Latin, Magic and Gnomon Squares: Definitions and Properties

A squared array, or more simply a square, is an array with the same number
of rows and columns. If the expression is prefixed by a positive integer, it
determines the size of the square, that is, its number of rows and columns. Three
types of squares with specific properties are of particular significance for our
analysis, namely Latin squares, magic squares and gnomon squares.

A Latin n-square is an n-square in which n different symbols occur n times
but only once per row and per column. Sudokus are the most popular Latin 9-
squares nowadays: in this puzzle, numbers from 1 to 9 have to be distributed
across the rows and columns with no repetition. The term was coined by
Leonhard Euler, who provided a constructive method for deriving magic squares
from Latin squares (Dénes and Keedwell 1991, p. 3).

A magic n-square, with n greater than or equal to 3, is an n-square exhibiting
two properties. First, it is filled with n2 different positive integers – in other
words, none of these numbers is repeated. Second, the sum of integers for each
row, each column and both main diagonals is a constant, which is known as the
magic sum. In particular, a pure magic n-square is a magic n-square wherein the
positive integers take consecutive values ranging from 1 to n2. Dürer’s square –
although equivalent distributions are found in China, from at least the thirteenth
century (Bača and Miller 2008, pp. 23–4) – is the most famous pure magic 4-
square (see Fig. 1, where our representation is bicoloured to highlight some of
the properties described below). It arranges integers from 1 to 16, and its magic
sum is 34.
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Table 1 Summary of the main formal properties of Dürer’s square

Origin Label Summary

magic square magic sum Rows, columns, and the main diagonals
sum to 34.

gnomon magic square magic semi-sum Skewing cells sum to 17.
additive invariance Adjacent black cells sum to 19, white ones

sum to 15.
Analogous sums for vertical pairs are 21

and 13.
subtractive invariance For each row, the absolute difference of

extreme cells is 3; 1 in the case of central
cells.

Analogous differences for columns are 12
and 4.

Among the possible ways of distributing numbers in a pure magic 4-square,
Dürer’s choice is quite singular from a mathematical viewpoint. It is actually
a gnomon magic square, that is, a magic 4-square wherein the magic sum
also appears in each of the four 2-subsquares of its corners, as well as the
central 2-subsquare (Hunter and Madachy 1975, p. 24). Further geometrical
patterns of the gnomon magic square also verify its magic sum (Pickover 2002,
p. 21).

Dürer’s square has other properties which emanate from its gnomon structure
and concern the relationships between pairs of cells. First, the sum of every pair
of skewing cells – those which are symmetrical with respect to the centre of the
square – is always 17, that is, half of the magic sum. This can be checked for
instance by adding the numbers from its opposite corners: 16 + 1 = 13 + 4
= 17. Second, several sums of adjacent cells remain invariant. Let us consider
horizontal pairs as depicted in our figure: adjacent entries in black always sum
to 19 whereas those in white sum to 15.3 Likewise, if we take vertical pairs, their
partial sums equal 21 and 13. Third, for every row i of the 4-square, the absolute
differences between extreme or central pairs of cells remain constant: |xi,1 – xi,4|
= 3 and |xi,2 – xi,3| = 3. This can be checked for instance with the first row:
|16 – 13| = 3 and |3 – 2| = 1. The same property applies to columns, taking
values 12 and 4.4

The properties listed above are important for our analytical purposes. Some
of these properties have implications regarding the distribution of pitches – and
possibly the rhythmic patterns – which we will examine. There are also properties
that affect the relationships among different pitches from a transformational
viewpoint. Therefore, we have decided to end this section with an abridged
statement of the square properties (Table 1). We suggest some ‘catchy’ labels
which may help the reader to quickly remember them when referred to in the
course of our analysis.
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Entering the Transformational Debate

In our introduction, we mentioned several European composers who
occasionally, whether consciously or not, used Latin or magic squares in their
composition process. American musicians have also dealt with such objects
for composing as well as for various analytical purposes. For example, Milton
Babbitt built squared arrays to analyse Schoenberg’s Violin Concerto, Op. 36
(1934–6; reproduced in Perle 1963, p. 121) or discussing Stravinsky’s Movements
(1958–9; Babbitt 1987, p. 18). Both diagrams are Latin 12-squares, a type of
array already identified by scholars in the study of Babbitt’s own music (e.g.
Cohn 1982).

In his writings, Babbitt often included arrays to help the reader better grasp
his theoretical argumentation. This choice was particularly appropriate in the
discussion of invariance, which was one of his favourite topics in relation
to twelve-note music (Babbitt 1960). In this context, invariance means that,
although a musical entity becomes a new entity when subjected to some
compositional technique, some aspects of its structure are preserved. For
example, consider any of the Latin 12-squares which respectively display the
transpositions and inversions of a twelve-note row. If the whole array is subjected
to a non-trivial transposition, an inversion or a combination of both, the outcome
will be a different square, yet also a Latin square.5 Invariance is an important
topic beyond twelve-note music analysis, as in the exhaustive list of pitch-class
sets (Forte 1973, pp. 179–81). Each set stands for a collection of elements which
preserve interval structure under transposition and/or inversion, such as all the
major and minor triads, which are represented by Forte’s prime form 3–11 [0,
3, 7].

Both Babbitt and Forte focused on the invariance of musical entities under
some compositional technique. This viewpoint prioritises the objects while
placing the transformation in the background. As mathematicians do when
they explore duality, this priority can be swapped. This idea is precisely that
which is at the core of transformational analysis in music (Lewin 1987). Among
the multiple tools created from this perspective, Henry Klumpenhouwer, along
with David Lewin, developed a technique which proved particularly suitable for
approaching atonal music. The main interest of Klumpenhouwer networks (K-
nets) is to connect different pitch-class sets by detecting stable transpositions
and inversions within their respective internal structures (Lewin 1990 and 1994;
and Klumpenhouwer 1991, 1994 and 1998). In other words, K-nets prioritise
the invariance of transformations – and that of hyper-transformations – while
relegating the more elemental structure of pitch-class sets to the background.

A few years after its publication, Lewin’s first article on K-nets – which
appeared in Music Theory Spectrum (Lewin 1990) – received a response in the
same journal from George Perle. The composer’s letter (Perle 1993) highlighted
the intimate resemblances between these networks and the Perle–Lansky cycles
he had started to explore in the 1960s. A crucial influence on his path was Alban
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Fig. 2 Sequence of sum tetrachords (adapted from Perle [1977] 1996, p. 53).
Accidentals affect only their related notehead

Fig. 3 Strong isographies among Perle’s sum tetrachords; partial transcription

Berg’s master array for transforming twelve-note rows (Perle 1977, p. 5). Perle
had already published some of his theoretical results before Lewin’s article (Perle
1964 and [1977] 1996). The music-theory community acknowledged Perle’s
remarks about K-nets, and some years later, the journal again dedicated a special
issue to this topic (Headlam 2002, Lambert 2002, Lewin 2002 and Stoecker
2002). Other scholars explored these resemblances further with great subtlety
(Foley 2002 and 2009).

Among the wealth of arrays and musical examples found in Perle’s writings,
the concept of sum tetrachords (Perle [1977] 1996, pp. 53–6) is particularly
relevant to understanding Manoury’s use of Dürer’s square and derived
combinatorial objects to generate related collections of pitch classes. Perle’s main
example is a particular chord sequence (reproduced in Fig. 2). We propose to
partially translate it into K-nets: as Perle detected in the 1990s, his sums match
with inversion operators in these networks, and his int[ervals] with transposition
operators (Fig. 3). In addition, we can easily rewrite the underlying Perle–Lansky
cycles as an array akin to our previous representation of Dürer’s square (Fig. 4).

The redundant representation of the two bottom pitch classes in each network
of Fig. 3 is an unusual unfolding of K-nets. In fact, Perle’s sum tetrachords
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Fig. 4 Underlying numerical array for the sequence of sum tetrachords (adapted
from Perle [1977] 1996, p. 53)

are actually triadic sets; his fifth and eleventh tetrachords are even only dyads,
containing pitch classes G� and B, and D and F, respectively. Far from being
useless to us, the repetition of pitch classes within these networks will help
us gain a deeper understanding of Manoury’s compositional constructions.
Our approach is motivated by recent developments in the theory of K-nets,
in particular the poly-K-Nets which generalise the existing model and include
the possibility of redundancies (Popoff, Andreatta and Ehresmann 2015 and
2018; and Popoff, Agon, Andreatta and Ehresmann 2016). In addition to
this clarification, the main result of our diagrammatic interpretation is the
persistence of strong isographies through different networks; this aspect is fully
consistent with previous research intersecting Perle–Lansky cycles and K-nets.

As to the array which displays the data from all the interacting cycles (Fig. 4),
it is not a square and its elements appear more than once. Therefore, it cannot
be compared straightforwardly with Dürer’s square. Despite this obvious fact,
the columns of this array exhibit remarkable properties which strongly recall
gnomon magic squares. First, there are only three possible sums for each
column: 11, 23 and 35. Second, all the black cells of a single column sum to
either 7 or 19, and the white ones sum to 4 or 16. Third, the difference of
outer entries in each column is always 0, whereas the difference of inner ones
is either 3 or 9 in absolute value. To provide a musically relevant interpretation
of these numbers, we simply have to consider octave equivalence and reduce
them to modulo 12. This choice enables us to consider numbers 11, 23 and
35 as one same value – likewise with 7 and 19 or 4 and 16 – whereas 3 and 9
are related via inversion, which leads us to uncover some structural attributes.
Indeed, the columns of the array have, modulo 12, three properties analogous
to those of Dürer’s square: magic sum, additive invariance, and subtractive
invariance. Even more important for us, two of these properties are projected
onto the transformational diagrams: the additive invariance matches with the
transposition operators and the subtractive invariance with the inversion ones.

Perle was intentionally working with these kinds of numerical invariances
although, to our knowledge, he never mentioned magic or gnomon magic
squares in his theoretical writings. Some decades later, Manoury was using
Dürer’s square for the composition of Melencolia, but was probably unaware
of these previous music-theoretical constructions. This serendipity, if we may
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call it that, leads us to adopt transformational tools in our following analysis of
Manoury’s String Quartet. We think it preferable to use K-nets instead of Perle-
like arrays because Manoury incorporated other compositional criteria which
may go unnoticed by taking the second option. Furthermore, the structural
plasticity of network drawings plays in our favour. We aim to metamorphose
the ‘molecular’ metaphor of K-nets (O’Donnell 1998) into a ‘hypercubic’
one. Thus, squared networks for tetrads will become the vertices of squared
isographies which will expand first as cubes, then as tesseracts. We believe
for example that cubic K-nets are handy visually speaking (e.g. Mazzola and
Andreatta 2006, p. 99), and a multi-dimensional gallery of squared isographies
would be an elegant offshoot from its root – Dürer’s square – in terms of
geometrical unfolding.

There are of course other voice-leading models for connecting the 29 classes
of T/I-equivalent tetrads (e.g. Straus 2003 and Cohn 2003), models which we
have carefully examined before embracing the K-net machinery. They fail to
yield adequate results in the context which interests us here for two reasons: they
ignore the properties of squares which we have already identified as a promising
path, and they cannot account for the issue of defective sets – that is, repetition
of pitch classes – whereas our model, as well as the generalised poly-K-nets,
does. But the best way to convince the reader of the validity of our approach is
to show our modelling of Manoury’s compositional choices with K-nets.

Melodic Tetrads Generated by Dürer’s Square

The opening of Melencolia is made of high but soft sustained pitches. The score
starts with an A6 – we consider the middle C = C4 – in the viola; this pitch
reappears, like a pedal across a long period of time (Ex. 1): it comes back in the
cello in bar 3 before being picked up by violin I, and so on. In Manoury’s sketch
for these bars (Plate 3), the first occurrence of A6 is labelled as axe, meaning axis
in French. In the sketch, we also find a polygonal line connecting numbers (16,
3, 2, 13) – that is, the first row of Dürer’s square – and another connecting its
retrograde (13, 2, 3, 16). Although it may seem unclear from the handwritten
document, a comparison of both diagrams with the first bar of Melencolia allows
us to deduce the following equivalences: on one hand, the numerical sequence
(16, 3, 2, 13) is mapped, from violin I to violin II and back to violin I, as the pitch
series (C8, B6, B�6, A7); on the other hand, sequence (13, 2, 3, 16) is mapped,
from cello to violin II to viola, as (A5, G�6, G�6, F�6).

The term axe provides the key to understanding these mappings. Considering
the number of semitones between the A6 pedal point and each pitch of these
melodic sequences, the mechanism is unveiled: Manoury mirrored, respectively
up and down, each value of the numerical sequence, minus one semitone – he
started by counting 1 for the pedal pitch itself. Only the F�6 does not match
with this protocol; it belongs to the expected pitch class but an octave higher.
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Ex. 1 Melencolia, bars 1–4. © Durand Editions, 2013. Reproduced by kind
permission of Universal Music Publishing and Durand Editions

Plate 3 Manoury’s draft for the opening bars of Melencolia. Reproduced by kind
permission of the author

The same compositional logic applies to bar 3, where pitches are derived from
the second row of Dürer’s square. This process continues, spanning bars 5–
7. In short, Manoury conceived a protocol for mapping the numerical entries
of the magic square into pitches. More accurately, as octave displacements are
sometimes found, the square is mapped into pitch classes.
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Fig. 5 Different tetrads generated from Dürer’s square. Each bar displays both the
original form and its inversion as vertical chords ignoring the actual octaves. The
number below each tetrad serves as a label for subsequent discussion. This style of
notation applies to further figures in this essay

A listener accustomed to atonal music may notice many of the symmetries
induced because of the recurrent parallel and contrary motions within the
opening bars. Beyond this, and disregarding rhythm, we may regard the eight
melodic lines derived from Dürer’s square as pitch-class sets (Fig. 5). We have
associated these sets in pairs – 1 and 5, 2 and 6, 3 and 7, 4 and 8 – to highlight the
most evident relationship. Each pair is generated by a single row of the square.
As pitch class A acts as a pitch-class mirror, it induces an I6 relationship between
the tetrads of each pair. A closer look allows us to detect further connections.
The eight tetrads belong to only two of Forte’s categories: tetrads 1 and 5, and
4 and 8 – which are identical to the former – are T/I-related to prime form 4–1
[0, 1, 2, 3], whereas tetrads 2, 3, 6 and 7 are T/I-related to prime form 4–13 [0,
1, 3, 6].

These features are interesting enough, analytically speaking, but we previously
promised to deliver K-nets. There are of course many possibilities for organising
their arrows; among them, we are going to opt for a path inspired by our
previous remarks about Perle’s method. As highlighted above, Dürer’s square –
its rows in particular – and the columns of Perle’s array for sum tetrachords share
three properties modulo 12: magic sum, additive invariance and subtractive
invariance. Let us therefore imitate the K-nets we built in Fig. 3, which captured
two of these properties, but this time with Manoury’s pitches (Fig. 6). For
an accurate analogy, we have to imitate the previous geometrical distribution
wherein the vertices are the pitch classes and the arrows are the sides of a
square. As in Perle’s example, we can start by drawing the horizontal arrows,
directed from left to right, corresponding to the transposition operators, and
the vertical, double-headed arrows of the inversion operators. Next, again as
with Perle, the subtractive invariance of Dürer’s square might be projected onto
the transposition arrows: let us for instance label T1 the upper arrow and T3

the lower one. All these choices allow us to univocally complete the K-nets for
tetrads 1–4 (Fig. 6a). In doing so, the inversion operators become equally fixed
and invariant for all K-nets, I7 and I11, respectively. In brief, our new K-nets
have exactly the same arrows, which implies strong isography between them. As
mentioned previously, we wish to preserve the square shape of the networks to
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Fig. 6 (a) Strong isographies among the K-nets for tetrads 1–4 (b) The same for
tetrads 5–8. Squared numbers in the centre of each K-net identify the embedded
pitch-class and, above all, become representative of the whole K-net for larger hyper-
K-nets. This style of notation applies to further figures in this essay

allow the geometrical unfolding of our analytic proposal; this fact explains our
particular distribution of the <T0> arrows.

Despite the successful embedding of subtractive invariance in the
transposition operators, it seems there is a problem with the inversion ones.
Their indices in our K-nets are 7 and 11, which are not congruent with 15 and
19 modulo 12. Apparently, the additive invariance of Dürer’s square has been
violated. It is, however, an effect of having A as the axial – that is, referential –
pitch class. Manoury’s system of reference is equivalent to considering A = 1,
B� = 2, B = 3, and so on. This is merely a transposition of the standard system
where C = 0, C� = 1, D = 2, and so on. Let us consider transposition T4, which
has so far been left implicit, for transforming tetrad 1: (A, B�, B, C) thus becomes
(C�, D, E�, E). When the new pitch classes are projected onto the structure of
the K-net of the former collection, that is, respecting the spatial distribution of
arrows, transposition operators T1 and T3 remain, but dyads (C�, D) and (E�,
E) allow inversion operators I3 and I7 to emerge. New indices 3 and 7 are this
time congruent with 15 and 19 modulo 12. Consequently, the constants of the
additive invariance of Dürer’s square were effectively preserved, although hidden
by Manoury’s axis.

The next objective is to build the K-nets for the inverted tetrads, that is, 5–
8. For that purpose, our strategy will be slightly different. We will start again
by positioning, in a squared structure, the horizontal sides for the transposition
arrows – once more from left to right – and the vertical ones for the inversion
arrows. Next, as we did previously, we will preserve the spatial distribution of
each I-related tetrad within its K-net: each I-related pitch class must occupy the
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Fig. 7 Isographic cube connecting the different K-nets for tetrads 1–8

same position. Consider for instance the spatial distribution of the K-net for
tetrad 1; in the K-net for tetrad 5, pitch class A remains invariant, whereas G�
takes the place of B�, G the place of B and F� the place of C. By doing the same
with tetrads 6, 7 and 8, we obtain a diagram akin to that for tetrads 1, 2, 3 and
4 (Fig. 6b). The difference is in the indices: transposition operators are now T11

and T9, whereas inversion operators are I5 and I1. Consequently, the circuit of
strong isographies remains unaltered.

Comparing the K-nets for tetrads 1–4 with those for tetrads 5–8, it becomes
evident that both families are related via negative isography <I0>. This outcome
is consistent with a theoretical result: given a set x and any K-net on it, if we apply
some inversion Ia to x and replicate the structure of arrows among inverted pitch
classes, the K-nets for x and Ia(x) become related via the negative isography
<I2a>. In our case, we already mentioned that the A axis induces I6-relations,
which leads to negative isography <I0> when preserving the spatial structure of
the K-nets. All in all, it is possible to merge both circuits of isographies in Fig. 6:
the result – keeping in the spirit of the hypercubic metaphor – is a cube in which
the vertices are the K-nets we have built, and its sides are only the isographies
<T0> and <I0> (Fig. 7). Evidently, we might have erased the K-nets of tetrads
5 and 8, as they repeat those of tetrads 1 and 4; the cube would have become a
triangular prism. We prefer, however, to retain the redundancy within the cubic
structure as it will prove useful for subsequent analytical purposes.

It is time for a short recapitulation. Through this section, we have provided
two analyses of the eight tetrads forming the opening of Melencolia. The first
analysis was quite succinct and object-oriented. By means of Forte’s set theory,
we reduced the tetrads to a pair of prime forms and highlighted the importance
of inversion. The second analysis was much longer and intricate; it adopted a
transformational viewpoint and incorporated the particular properties of Dürer’s
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Fig. 8 Comparison of Manoury’s carré I (Dürer), carré II and carré III

square. By using K-nets, we were able to represent the tetrads with only
two kinds of networks and construct a hyper-K-net with only two types of
isographies. Both perspectives have provided intriguing outcomes, but the reader
may wonder whether the complexity of the second path was worth the effort.
Our response is affirmative: further analyses of new pitch-class sets – equally
obtained from Manoury’s squared arrays – will demonstrate that the number of
prime forms and their distribution may change without displaying a particular
arrangement at first glance, whereas the transformational approach discloses
many more patterned features.

Exploring Klumpenhouwer Tesseracts

Let us return to the combinatorial strategies which led to the actual composition
of Melencolia. Manoury’s sketches for the formal structure of the piece did
not only incorporate Dürer’s square but also progressive transformations of its
numerical entries. In particular, Plate 2 contains three arrays (summarised in
Fig. 8) which are labelled carré I, carré II and carré III, that is, squares I, II and
III in French. A close look at these squares allows us, by projecting the patterned
structure of black and white cells from Fig. 1, to deduce how they are related.
Square I is simply Dürer’s square. In Square II, numbers have been slightly
altered: for each horizontally adjacent pair of entries sharing a colour in Dürer’s
square, the larger number is reduced by 1 whereas the smaller is increased by
1. For example, (16, 3) becomes (15, 4) and (2, 13) becomes (3, 12). This
parallelism of increase and decrease is kept in Square III, where (15, 4) becomes
(14, 5) and (2, 13) becomes (3, 12).

Although this mechanism is almost always repeated mechanically, the reader
may wonder what happens, for instance, when a descending progression reaches
value 1. To explain this and other situations, consider Plate 4. Here we find four
arrays, each made of 4 rows and 23 columns. Let us consider the first column
of each array and, preserving the order of the arrays, arrange the contents side
by side into a square: we will have reconstructed Dürer’s square. Applying the
same protocol to the second column of each array restores Square II, and so on.

Manoury probably decided to split Dürer’s square into its four columns in
order to facilitate his work on the algorithmic deduction of the modified squares.
The mechanism is quite simple and may be inferred from the upper array. As we
have already seen, this array starts with the first column of Dürer’s square. We
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Plate 4 Manoury’s arrays defining the progressive transformation of Dürer’s square.
Reproduced by kind permission of the author

have already pointed out which values increase by 1 and which decrease by 1:
thus, column (16, 5, 9, 4) becomes (15, 6, 8, 5). The process may then take two
possible paths. When no entry in the most recently generated column reaches
the maximum or minimum values of Dürer’s square – 1 or 16 – the ongoing
arithmetic progressions continue their course. Otherwise, a rebound takes place:
once a maximum or minimum value is reached, the arithmetic progression is
reversed. This reversal also takes place in the related row: if, for instance, the
maximum or minimum value was reached in the first – alternatively the fourth
– row, the second – alternatively the third – row would equally see its arithmetic
progression reversed, and vice versa. This associated change of direction serves
to offset the one which triggered the rebound. Let us continue our examination
of the upper array to illustrate our previous comment. Neither 1 nor 16 belongs
to the second column (15, 6, 8, 5), which means that the following will be (14, 7,
7, 6). Several steps later, the eighth column becomes (8, 13, 1, 12); as the third
entry is 1, the two lower rows reverse their respective arithmetic progressions,
which leads to (7, 14, 2, 11) as the next column. The process ends with the 23rd
iteration, when the first column of Dürer’s square is restored.

There are resemblances between Manoury’s sketch and the former’s arrays,
such as the one we adapted in Fig. 4. Both Manoury’s arrays and what we
already found in Perle’s sum tetrachords lead us to examine which properties
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of Dürer’s square are preserved in the new squares generated by Manoury’s
algorithmic strategies. These are not necessarily magic squares because numbers
are often repeated within them, as happens for instance in Squares II and III.
In addition, there are a few squares in which certain properties of Dürer’s
square do not apply: these are the squares generated by the ninth, tenth, twenty-
first and twenty-second columns of Manoury’s arrays. The composer probably
detected some irregularities – they mark the moments in which the rebounds of
the arithmetic progressions are unsynchronised – and therefore withdrew them.
Otherwise, the magic sum, additive invariance of rows and subtractive invariance
are preserved. Again with regard to Fig. 8, the first and second properties appear
as merely trivial consequences of the increasing and decreasing progressions
of adjacent entries sharing a same colour, which balance the sums of these
entries.6 It is interesting that, after the first sequence of rebounds, white and
black adjacent pairs swap their sum. They swap back again for the last column,
that is, when Dürer’s square is reconstructed. Moreover, Manoury’s squares
preserve the subtractive invariance of rows because the arithmetic progressions
run in parallel, except during the unsynchronised rebounds.7

There are nineteen passages in Melencolia which depend on thirteen different
squares resulting from Manoury’s procedure (for a comprehensive list of these
passages, see Table 2). He used these squares in a way similar to what he did with
Dürer’s square: he selected a pitch class for each of his twelve new squares which
served as an axis for the derivation of pitch-class sets. The choice of the twelve
new axes was not arbitrary. They correspond to the pitches which Manoury
already obtained from the first three rows of Dürer’s square. These pitches can
be retrieved from tetrads 1, 2 and 3 in Fig. 5, respecting the precedence of pitch
classes inferred from reading Dürer’s square from left to right, and from top to
bottom. The resulting list of axes coincides with the following dodecaphonic row
(C, B, B�, A, C�, F�, G, E, F, D, E�, A�). Thus, to any square n with n greater
than 1, Manoury attached the n – 1 pitch class of the twelve-note row as its
axis. Because we do not have enough space to provide an extensive tour of all
the passages in Melencolia where the twelve new squares are called upon, we will
only focus on a few particular situations.

Let us start with Square V (Fig. 9b), to which the A axis is attached, as
was already the case at the beginning of the piece with Dürer’s square. Both
elements allow us to calculate eight new tetrads as in the previous case. We map
the numbers in each column of the square into ascending semitones in order
to obtain tetrads 1V–4V – reminding ourselves to subtract one semitone because
the axial pitch class A already stands for value 1. For instance, the first row of
Square V (12, 7, 6, 9) generates tetrad 1V (G�, E�, D, F). Tetrads 5V–8V, as the
A axis induces inversion I6, can be immediately derived from 1V–4V. At the end
of this process, eight tetrads have been deduced (Fig. 9a).

These pitch-class sets are found in bars 161–170. Bars 161–162 (Ex. 2)
unfold two kinds of figures: short accentuated notes – mainly harmonics –
displaying a descending movement, on one hand; on the other, different kinds of
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Fig. 9 (a) Different tetrads derived from Manoury’s Square V (b) Square V (c)
Strong isographies among the K-nets for tetrads 1V–4V

Ex. 2 Melencolia, bars 161–162. © Durand Editions, 2013. Reproduced by kind
permission of Universal Music Publishing and Durand Editions
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Table 2 Synoptic description of all the passages in Melencolia based on the magic
square category. We keep Roman numerals and indices for square numbers and
rehearsal letters as they are found in Manoury’s sketches. The bracketed rehearsal
letter does not appear in the score, although it is found in his drafts. Bar numbers
do not reproduce sketch data but actual values within the score. Asterisks highlight
the presence of the axis within the score

Bars Rehearsal Square Axis Square texture Overlapping texture
1–8 IA I A∗ Static None
9–16 IB II C Tremoli and pizz.
17–24 IC I A Short tremoli None
25–32 ID II B Static Tremoli and pizz.
33–37 IE I A Short tremoli and pizz. None
38–41 IF IV B�∗ Extreme voices Central voices
161–170 IVA V A Static and pizz. Scales
171–186 IVB Static, repeated, and pizz. Grammars (varia)
187–190 IVC Static and pizz. Scales
293–308 VIC VI C�∗ None
324–341 VIE VII F�∗ Repeated and pizz.
376–393 VIIB VIII G Static and pizz. Pizz. double strings
394–413 VIIC IX E Static Scales
437–458 VIIE X F∗ Hocket None
459–475 XI D
503–408 VIIIB XII E�∗ Short melodic accents
539–548 [VIIID] XIII A�∗ Repeated and accents
577–581 VIIIH I A Static
582–587 IXA III C Viola phrases
588–597 IXB II B Cello phrases
598–606 IXC I A∗ None

longer sounds with a resonant effect, namely fp sustained harmonics, left hand
pizzicati whereas the screw of the bow frog is placed on the string for a metallic
effect, and sounds produced by the crotales. Manoury used the pitch classes
derived from Square V for the resonant figures: the pitch classes of tetrad 1V –
or 2V, which is identical to it – are distributed across both violins whereas those
of tetrad 8V – or 7V – are placed in the viola and the cello.

Unlike the tetrads derived from Dürer’s square, all collections from 1V to
8V can be reduced to prime form 4–13 [0, 1, 3, 6]. The repeated rows in
Square V also give rise to a larger repetition of pitch-class sets. Forte’s analytical
perspective therefore seems – at least at first glance – to fall short of unveiling a
deeper formal connection between the tetrads generated from different squares,
whereas K-nets elegantly solve this issue.

We may draw K-nets for tetrads 1V–4V by following exactly the same protocol
as we described earlier for tetrads 1–4. We can opt for this path – and here
we are emphasising a fundamental aspect of our analytic proposal – because
Square V preserves the additive and subtractive invariances of Dürer’s square.
The result is a circuit of strong isographies among the four K-nets (Fig. 9c)
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Fig. 10 K-tesseract connecting all the K-nets for tetrads 1–8 and 1V–8V

which, structurally speaking, is exactly the same as that presented in Fig. 6a.
Analogously, we may draw a circuit of K-nets for tetrads 5V–8V and retrieve
the same structure of K-nets and circuit of strong isographies as that displayed
in Fig. 6b for tetrads 5–8. Continuing the analogy, as both squared circuits are
preserved and the A pitch-class axis is shared between Dürer’s square and Square
V, we may draw an isographic cube for tetrads 1V–8V and retrieve the same
structural isographies as those shown in Fig. 7 for tetrads 1–8. Finally, as for
any value α from 1 to 8, K-nets for tetrad α and αV have the same distribution
of arrows, the respective pair of K-nets can be linked by a strong isography.
All these results lead us to build a tesseract of isographies for connecting all
the K-nets for tetrads 1–8 and 1V–8V, that is, connecting both isographic cubes
(Fig. 10). In doing so, we expand our hypercubic metaphor. We will henceforth
use the term K-tesseract for such transformational layouts. This particular K-
tesseract only displays isographies <T0> and <I0>.

K-tesseracts become more complex when the pitch-class axes are moved
because the underlying K-nets also vary. For instance, consider section VIIE of
Melencolia, which is based on Manoury’s Square X and on the F axis (Fig. 11b).
We must consider this new axis for calculating the tetrads. Now, F stands for
value 1 when calculating pitch classes: for instance, the first row of Square X
(5, 10, 11, 8) becomes tetrad 1X (A, D, E�, C). As F is the axis, it also induces
inversion I10 instead of I6 in the previous cases. Thus, the I10-related tetrad of
1X is 5X (C�, A�, G, B�). Other tetrads originated by Square X are obtained in
the same way (Fig. 11a).

These sets are found at bars 437–458. In bars 438–440 (Ex. 3), the viola
periodically plays F6 on a crotale – matching with the axis – whereas the violins
and the cello unfold a string hocket based on the tetrads in question. For
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Fig. 11 (a) Different tetrads derived from Manoury’s Square X (b) Square X (c)
Strong isographies among the K-nets for tetrads 1X–4X

Ex. 3 Melencolia, bars 438–440. © Durand Editions, 2013. Reproduced by kind
permission of Universal Music Publishing and Durand Editions
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Fig. 12 K-tesseract connecting all the K-nets for tetrads 1–8 and 1X–8X

instance, there are eight notes played by the strings in bar 438: the notes in violin
I and the D7 in violin II match with tetrad 1X; in turn, the notes in the cello and
the C6 in violin II match with 7X except for a missing A. It can be surmised that
Manoury or his publisher mistranscribed a B5 in the cello, because this pitch
appears twice. Similarly, we find tetrads 2X and 6X – or 4X and 8X, which are
the same – at bar 440 except for a missing G this time.

From the perspective of set theory, we discover a different distribution from
those related to Dürer’s square and Square V. This time, tetrads 1X, 3X, 5X and
7X are T/I-related to prime form 4–13 [0, 1, 3, 6], whereas tetrads 2X, 4X, 6X

and 8X are T/I-related to prime form 4–13 [0, 1, 2, 3].
Let us draw K-nets for tetrads 1X–4X by following the same protocol as

in previous cases (Fig. 11c). Compared with Figs. 6a and 9c, transposition
operators and strong isographies are preserved. The indices for the inversion
operators have changed however: they are now 11 and 3 because of the
displacement of the axial pitch class. In addition, as tetrads 1X–4X are related
to tetrads 5X–8X by means of inversion I10, we may generate structurally
matching K-nets for the last sequence of tetrads. They are automatically related
– reminding us of a theoretical result enounced above – to the former sequence
via negative isography <I8>. Therefore, we obtain a cubic net of isographies
connecting the K-nets of the tetrads from Square X which we now want to place
in front of the cube built from Dürer’s square in Fig. 7 in order to ‘close’ the
K-tesseract. Comparing Figs. 6a and 11c, it is evident that, for any value β from
1 to 4, K-nets for tetrad β and βX are related via isography <T4>. Applying laws
for isographic composition (Klumpenhouwer 1998), this result can be extended
to values β from 5 to 8, and the K-tesseract is finally settled (Fig. 12).
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Fig. 13 (a) Square XIII. (b) Isographically related K-nets for triads 1XIII and 5XIII

A comparison between this K-tesseract and the previous tesseract in Fig. 10
reveals two salient differences. First, the negative isographies connecting the
opposite sides of each main cube in the new tesseract are different. Second, the
isographies connecting both main cubes are no longer <T0> but <T4>. Both
features are a consequence of the axis displacement. As we explained earlier, this
displacement can be regarded as a factor of transposition of the tetrads induced
by the axes. In this sense, let us remember a theoretical result similar to the
one we already enounced apropos of inversions: given a set x and any K-net
on it, if we apply a transposition Tb to x and replicate the structure of arrows
among transposed pitch classes, the K-nets for x and Tb(x) become related via
the isography <T2b>. In this case, pitch classes are not transposed, but although
additive and subtractive invariances are preserved, the result still applies. It is in
fact consistent with the construction of our second K-tesseract: as the axis moved
from A to F, transposition T8 is implicit, which leads therefore to <T4> among
the equivalent tetrads of different squares.

Rhythmic Excursus

In addition to using arrays to produce sets, Manoury took advantage of
his arithmetical procedures in very sparse situations for developing rhythmic
patterns. This is the case, for instance, of section VIIID, which spans bars 539–
548 and is related to Square XIII (Fig. 13a). In its opening bars (Ex. 4), both
violins and the viola unfold a continuous flux of demisemiquavers emphasised by
salient accents; the crotale – controlled by the cellist – enters when the accents
of the three string instruments converge. Both violin II and the crotale only play
G�6, which matches with the pitch-class axis of Square XIII. The centrality of
this axis, as happened with the opening bars of Melencolia, is observed in terms
of register, something which is aurally recognisable. The first row of this square
consists of (8, 7, 8, 11). By following the same process as in previous examples,
we obtain the melodic four-note sequences (E�7, D7, E�7, F�7) and – reading from
right to left – (B�5, C�6, D6, C�6). These sequences are found in violin I and in
the alto, respectively.

Notice that, this time, we have used the term melodic sequences instead
of tetrads. The reason is manifest: because both sequences contain repeated
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Ex. 4 Melencolia, bars 539–542. © Durand Editions, 2013. Reproduced by kind
permission of Universal Music Publishing and Durand Editions

pitches, their related pitch-class sets are not tetrads but triads – which we label,
in accordance with the terminology employed throughout our article, as 1XIII

and 5XIII. In particular, both triads belong to Forte’s prime form 3–3 [0, 1,
4]. In parallel, we may draw their respective K-nets with the same rules we
developed for previous tetrads (Fig. 13b) – incorporating for this purpose pitch-
class repetition – and verify that the transformational structure is still preserved.

The main purpose of our excursus, however, was to analyse rhythm. Counting
the number of demisemiquavers between the accents in both violins and the viola
generates the numeric sequences (8, 13, 7, 6) for violin I and the viola, and (8,
7, 8, 11) for violin II, which correspond to the first column and the first row of
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Square XIII, respectively. The same happens throughout the section in relation
to further rows and columns of the same square. Consequently, Manoury
used his squared array towards a personal interpretation of Olivier Messiaen’s
chromatic durations.8 A particular feature emerges from this compositional
choice. The accents in violin I – alternatively the viola – and violin II start
together but finally become unsynchronised; after 34 demisemiquavers, they
converge at bar 541, and so on. This is an outcome of the preservation of the
magic sum across Manoury’s modifications of Dürer’s square.

Analytical Abstractions: Summary and Extension

Throughout the different passages of Melencolia that we have analysed, several
more or less patterned structures have emerged. Although the use of pitch-class
sets derived from mathematical squares is not pervasive through all sections
of Manoury’s quartet, their recurrent use – and particularly some symmetries
which can be found in Table 2 – is probably the main feature of the piece’s
underlying coherence. Interestingly, as the examples throughout this essay
have corroborated, the composer contextualised these pitch-class sets in many
different ways, which enabled him to achieve a subtle balance between surface
diversity and formal unity.

Thanks to set theory, we identified that Dürer’s square gives rise to two
categories of T/I-related tetrads with underlying prime forms 4–1 [0, 1, 2, 3]
and 4–13 [0, 1, 3, 6]. The same sets could be found within Square X; yet, the
connections between analogous tetrads in both squares remained unclear to us
provided that we remained focused on the basic tenets of set theory. Moreover,
Square V only generated T/I-related transformations of prime form 4–13 [0, 1,
3, 6]. Things seemed to go wrong even with Square XIII, which generated T/I-
related triads with underlying prime form 3–3 [0, 1, 4], thus implying some kind
of pitch-class ‘collapse’ caused by repetition. Neither inclusion nor the reciprocal
complement relationship are found between Forte’s prime forms 3–3 [0, 1, 4]
and 4–1 [0, 1, 2, 3] or 4–13 [0, 1, 3, 6]. In short, pitch-class set theory has
not been sufficient for a straightforward explanation of some deep relationships
which connect the tetrads – or ultimately the triads – generated from Manoury’s
disparate squared arrays.

In contrast, K-nets have proven particularly suitable for this purpose. It is
time therefore to initiate a more abstract discussion of our model of K-tesseracts
(Fig. 14). Let A and B stand for any two distinct squares, and α and β represent
the respective pitch-class axes for each of these squares. When A or B equals 1,
then Dürer’s square is implied. We can spot three different levels of isographies
within the K-tesseract. First, K-net circuits derived from local readings of each
square – that is, for sets 1A–4A, 5A–8A, 1B–4B and 5B–8B – are connected by
strong isographies. Second, inversionally related sets – for example 1A and 5A –
may preserve the original display of arrows of their K-nets. In this case, these
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Fig. 14 Generalisation of K-tesseracts relating the pitch-class sets derived from any
pair of squares

nets will be related by a negative isography which, depending on the symmetry
axes, can be either <I4α> or <I4β>. Finally, the K-nets of analogous sets from
different squares – that is, eA and eB where e can take any value from 1 to 8
– are related by <T2(β−α)>, which captures the axial displacement. In a case
where there is no change of axis, this isography is trivially strong. These three
isographic levels are distributed in a patterned way from a geometric perspective.
Strong isographies are the edges of the four parallel faces of the K-tesseract
and therefore define its vertical and horizontal dimensions. Negative isographies
define the sagittal dimension and, together with the strong isographies, make up
two facing cubes which relate to each of Manoury’s Square, respectively. Positive
isographies connect both cubes, resulting therefore in an additional fourth
dimension which gives rise to the K-tesseract. It is important to highlight, as one
of our major analytical results, that these isographic levels are a consequence
of the additive and subtractive invariances of Manoury’s Square and/or their
respectively fixed pitch-class axes (as summarised in Table 3).

All the K-nets we have shown for sets 1A–4A have arrows T1 and T3. The K-
nets of their I-related sets therefore exhibit – because of the negative isographies
– arrows T11 and T9. The latter arrows can of course be reversed to yield T1 and
T3 again. This choice demands that transposition operators become invariant in
all the K-nets of our model. Conversely, only inversion operators vary according
to the pitch-class axis. By means of several of the results obtained previously, it
is possible to calculate all the inversion operators which take part in our K-nets
for each axis, for any set as well as its axial inversion (Table 4). A meaningful
inference which we can make through this table is that, among all the possible K-
nets of our analytical model, there are only six structural configurations. These
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Table 3 Summary of the different isographies conforming a K-tesseract and their
matching mathematical properties and/or compositional choices

Dimension Isography Cause

Horizontal (1st) <T0> Additive and subtractive invariance in any of
Manoury’s squares.Vertical (2nd)

Sagittal (3rd) <I4α> Pitch-class axis α.
4th Dimension <T2(β-α)> Additive and subtractive invariance in any of

Manoury’s squares + Displacement from
pitch-class axis α to β.

Table 4 Summary of inversion arrows for any K-net in our model and for each
pitch-class axis. The ‘Isography’ column highlights the link between K-nets of two
I-related sets by means of the mirroring axis. The shaded cell matches the UrK-net

Pitch-class axis I arrows (original) Isography I arrows (inversion)
C or F� I1 and I5 <I0> I7 and I11
C� or G I3 and I7 <I4> I9 and I1
D or A� I5 and I9 <I8> I11 and I3
E� or A I7 and I11 <I0> I1 and I5
E or B� I9 and I1 <I4> I3 and I7
F or B I11 and I3 <I8> I5 and I9

configurations always preserve arrows T1 and T3 but let their inversion operators
vary between six possibilities: I1 and I5, I3 and I7, I5 and I9, I7 and I11, I9 and I1,
I11 and I3. One of these configurations was already evoked in our first analysis.
It fixes arrows T1, T3, I3 and I7, thus capturing the true constants – modulo
12 – of the additive and subtractive invariances in Dürer’s square. Coining
a neologism inspired by the Schenkerian tradition, we henceforth define this
archetypal structure as the UrK-net.

As there are only six K-nets in our model, we can calculate the 72 pitch-
class sets from which they may be constructed. For each K-net, it is merely
necessary to select a pitch class – for instance, in the lower-left corner – and fill
all the others by following the arrows. Next, it is possible to reduce the variety
of sets by considering T/I-relationships: the outcome is a heavily patterned map
(Table 5). There are, consequently, 12 sets with prime form 3–3 [0, 1, 4], 24
sets with prime form 4–1 [0, 1, 2, 3], 24 sets with prime form 4–13 [0, 1,
3, 6] and 12 sets with prime form 4–20 [0, 1, 5, 8]. All of these forms were
corroborated by our previous analyses, save the last prime form for which we
did not encounter any corresponding set. There were, however, representatives
of this form in Ex. 4. The melodic four-note sequences of violin I and of the
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Table 5 Map of pitch-class sets that could be generated by all possible K-nets in our
model. Reminder: 3–3 [0, 1, 4], 4–1 [0, 1, 2, 3], 4–13 [0, 1, 3, 6] and 4–20 [0, 1, 5,
8]

Inversion operators of K-nets
Lower-left
pitch-class I1 and I5 I3 and I7 I5 and I9 I7 and I11 I9 and I1 I11 and I3

C or F� 4–1 3–3 4–13 4–20 4–13 3–3
C� or G 3–3 4–1 3–3 4–13 4–20 4–13
D or A� 4–13 3–3 4–1 3–3 4–13 4–20
E� or A 4–20 4–13 3–3 4–1 3–3 4–13
E or B� 4–13 4–20 4–13 3–3 4–1 3–3
F or B 3–3 4–13 4–20 4–13 3–3 4–1

Fig. 15 Embedding of the UrK-net onto a circular diagram elucidating, by means
of four representatives, the invariant structure of any possible pitch-class set in
our model. Arrows stand for transposition operators while dashed lines stand for
inversion ones

viola in bars 541–542 are (A�7, D�7, C7, F7) and (B5, E6, E�6, A�5), respectively,
which match with Forte’s prime form 4–20 [0, 1, 5, 8]. These tetrads – 2XIII

and 6XIII – result from interpreting the second column of Square XIII in
Fig. 13. Our transformational model has thus been able to predict a category
of T/I-related pitch classes which had gone unnoticed throughout our previous
analyses.

As a final proof of the advantages of K-nets, we may embed onto circular
diagrams four representatives among the possible pitch classes generated by the
UrK-net of Dürer’s square (Fig. 15). The resulting diagrams are quite eloquent
from an analytical perspective. First, they demonstrate that the structural
equivalences among the four types of sets were not self-evident; they have
emerged through the K-nets. Second, the representatives of Forte’s classes 4–
1 and 4–20 are invariant under inversions I5 and I11, respectively. This feature
implicitly explains why, on the map in Table 5, the total number of occurrences
of these classes is only half of that of classes 3–3 and 4–13. As can be seen from
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Fig. 16 (a) Underlying UrK-net of a generic gnomon 4-square (b) Dürer’s square
and its UrK-Net (c) Quadraginta square and its UrK-net

the representatives chosen in this figure, the latter classes have no symmetry axis.
Third, the pitch-class ‘collapse’ from tetrad to triad can be visualised in the fact
that inversion and transposition operators become superposed onto shared lines.
In this example, the repeated pitch class is D.

Compositional Prospects

Manoury’s squares are not, generally, magic squares. Nevertheless, as both
additive and subtractive invariances are preserved, the UrK-net remains
referential for them. This fact is pivotal to our argumentation: it is not the
property of being magic, but the invariances which determine the structure of the
UrK-net. Let us therefore reach a new level of abstraction, abandoning Dürer’s
square in favour of a generic square which must retain at least the invariance
properties – that is, a gnomon square. On one hand, the arrows of its UrK-
net are defined by four numerical values, namely τ 1, τ 2, σ 1 and σ 2 (Fig. 16a):
τ 1 and τ 2 project the subtractive invariances onto the transposition operators,
whereas σ 1 and σ 2 project the additive invariances onto the inversion operators.
However, these values are not independent, as τ 2 = |σ 1 – σ 2| – τ 1.

The main interest of this abstraction is not analytic but intrinsically
compositional. In fact, given a set of reasonable values for a magic sum and
constants τ 1, τ 2, σ 1 and σ 2, it is possible to create new gnomon squares beyond
Dürer’s one (Fig. 16b). To illustrate the potentialities of this construction, let
us define the Quadraginta square (Fig. 16c): here, the magic sum is 40, the
constants of the additive invariances are 23 and 17 – which leads to indices 11
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Fig. 17 Strong isographies among K-nets of four different tetrads derived from the
Quadraginta square, analogous to those we built for analysing Melencolia

and 5 for the inversion arrows – whereas the constants of subtractive invariances
are 2 and 4. If, in a way similar to Dürer’s square, we fix the maximum and
minimum values – that is, 1 and 19 – as the entries in the skewing cells at
the upper-left and lower-right corners; all other entries will be automatically
filled thanks to the invariance properties. Notice that the Quadraginta square
preserves the magic sum by rows and columns but is not magic because value
10 appears in two different cells. Once the square and its UrK-net are fixed, it is
possible to use them to generate tetrads – eventually smaller pitch-class sets – as
Manoury did in Melencolia. These tetrads are automatically related by strong
isographies (Fig. 17) and can therefore be considered from a compositional
perspective.

This brings us back to Perle’s theoretical constructions. While discussing his
sum tetrachords, we found a K-net structure which remained invariant through
all the sequence. We could also have continued the chain of strong isographies
in Fig. 3 for all its chords. The sequence is made up of twelve chords because
of the underlying cycles of perfect fifths which Perle used to generate it. As the
invariant K-net we built for the analysis of Perle’s example could be regarded as
an UrK-net among many potential ones, a significant consequence arises. Let
M represent any of Manoury’s squares: collections 1M–4M – alternatively 5M–
8M – might be considered, in terms of pitch classes, as a subset – perhaps with
repetitions – of the sequence of Perle’s sum tetrachords which shares the same
structural K-net. For this reason, we henceforth label sets 1M–4M – alternatively
5M–8M – as Perle-Manoury collections.
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Further Analytical Abstractions: On Recursion and Movement

Let us imagine that we have the K-tesseract relating the Perle–Manoury
collections from Dürer’s square to those from Manoury’s Square II, as well as the
K-tesseract for Squares II and III. We may combine these tesseracts by means
of their shared cube and consequently obtain a larger hyperprism: this operation
is similar to gluing together two cubes by opposing a couple of equivalent faces.
The process can be iterated – adding the K-tesseract for Manoury’s Squares III
and IV, and so on – until the cube of K-nets for Square XIII is reached. The
resulting structure would form a long chain of twelve aligned K-tesseracts, made
of 104 vertices and 252 isographies.9 All the vertices belong to the isographic
variants of the UrK-net previously summarised in Table 4. The isographies are
also neatly distributed: on one hand, 104 strong isographies – those for the
vertical and horizontal dimensions – configure a large ensemble of 26 parallel
faces; on the other hand, 52 negative isographies – for the sagittal dimension
– and 96 positive ones10 – for the fourth dimension – are determined by the
aforementioned dodecaphonic row (C, B, B�, A, C�, F�, G, E, F, D, E�, A�) which
Manoury generated from Dürer’s square for obtaining an ordered sequence of
pitch axes, preceded by an initial A. In particular, the negative isographies – in
packages of four – reflect, multiplied by 4, the numerical structure which lies
behind the tridecaphonic row: <I0>, <I0>, <I8>, <I4>, <I0>, <I4>, <I0>,
<I4>, <I4>, <I8>, <I8>, <I0> and <I8>. Similarly, the positive isographies –
in packages of eight – reflect, multiplied by 2, the intervals between contiguous
pitches of the other thirteen-tone row: <T6>, <T10>, <T10>, <T10>, <T8>,
<T10>, <T2>, <T6>, <T2>, <T6>, <T2> and <T10>.

The choice, twice in the above paragraph, of using the term packages was
not innocent. The huge hyperprism which we have defined ideally embodies
our desired hypercubic metaphor, but it is impractical visually speaking.
Recursion – that is, packaging isographies with some associated hierarchy
– may facilitate a visualisation of the whole transformational process. Our
schematic model of recursion is inspired by Klumpenhouwer’s work on Donald
Martino (Klumpenhouwer 1991), although other notations are possible (e.g.
Tymoczko 2007). Our choice, throughout the previous analysis, of using
squared labels standing for K-nets in cubes and tesseracts was already a
manner of recursion. We may keep the aforementioned 26 faces, because
they are all squares made of strong isographies among K-nets within a Perle–
Manoury collection. Next, each package of four negative isographies <Ix>

between K-nets of I-related Perle–Manoury collections may merge into a single
hyper-hyper-arrow <<Ix>>. Analogously, each package of eight isographies
<Ty> connecting cubes may merge into a single hyper-hyper-hyper-arrow
<<<Ty>>>. Carrying on this way over our hyperprism of isographies, the
diagram – baptised Perle-Manoury K-necklace – becomes much more readable
(Fig. 18).
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Fig. 18 Perle–Manoury K-necklace for Melencolia. The dashed arrow simply closes
the circuit

The term ‘necklace’ has mathematical resonances with combinatorics
(Gilbert and Riordan 1961); yet, by selecting it, we are also leaving aside another
mathematical metaphor, which is the hypercubic one. The Perle–Manoury K-
necklace induces, visually speaking, the displacement of a hierarchised object
through a path of hyper-hyper-hyper-arrows. It resembles the manoeuvre of
a TIE-fighter spacecraft of the Empire in Star Wars. Our final diagram,
consequently, embraces the ‘motion’ metaphor, which is often behind the
transformational perspective in music theory (Attas 2009).

Afterthought: Into the Debate on K-nets Promiscuity?

Our Perle–Manoury K-necklace is among the densest analytical diagrams to
have been constructed so far based on Klumpenhouwer’s theory of an existing
musical score. This huge density may bring to mind the quarrel on promiscuity
around K-nets, with, on one hand, a scholar denouncing this particular feature
(Buchler 2007, § 32–52) and on the other, those embracing its potential (e.g.
O’Donnell 2007).11 Our position somehow lies outside this discussion because,
although our final diagram is truly dense, it is made of a few and strongly
patterned elements, and it is, above all, derived directly from Manoury’s squares
and axes. In that sense, we have demonstrated that even negative isographies,
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which have sometimes been considered a questionable tool in terms of musical
intuition (e.g. Straus as cited in Losada 2007, § 17), can match with actual
compositional intentions. Our aim throughout our whole essay has therefore
aligned with the notion of ‘contextual transformations’ (Lambert 2000) in a
quest for grasping, and further formalising, some of Manoury’s compositional
strategies.
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NOTES

1. A second formal sketch by Manoury also incorporates the mention of
a section categorised as a ‘Lamento in memoriam Emmanuel Nunes’ in
tribute to the Portuguese composer, who died as Manoury was writing his
score.

2. Other composers with similar grammar-based approaches are Hanspeter
Kyburz (Supper 2001, pp. 51–2), Enno Poppe (Knipper 2014 and 2017)
and Alberto Posadas (Besada 2017, pp. 159–82 and 2019).

3. This property is, as a matter of fact, constructive. Let us fix the upper left
pair of black entries. Owing to the magic sum, the sum for the white lower
left pair is fixed equally. Next, and owing to the skewing cell properties, the
sums for both the upper and lower right pairs are also fixed. Finally, and
as a consequence of the structure, 2-subsquares in the gnomon square, the
remaining four pairs for the central columns are fixed equally.

4. In the formulas, the straight brackets stand for absolute values, that is,
those without regard to their respective sign.
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5. In particular, transpositions reorder the position of the rows in the former
Latin 12-square, whereas inversion I0 exchanges rows and columns in the
same way mathematicians talk about transposed matrices.

6. The additive invariance and the magic sum also hold for columns; it can
be checked by recolouring the sequence of squares vertically. Nevertheless,
the unsynchronised rebounds are situated elsewhere.

7. Again, the subtractive invariance also holds for columns, with different
unsynchronised rebounds.

8. The technique is based on the additive principles Messiaen borrowed from
Indian music and adapted to a Western serial context (Simundza 1987 and
Hook 1998).

9. The number of vertices is 13 times the 8 tetrads related to each square. For
the number of isographies, we have to avoid repetition while counting: 32
isographies for the starting K-tesseracts but next, when gluing the 12 new
ones, only 20 for each.

10. Again, these numbers deserve some comment. The strong isographies are
4 times the 26 faces involved in which related tetrads are grouped. The
negative isographies are 4 times the 13 different gnomon squares. The
regular positive isographies are 8 times the 12 connections between pairs
of cubes that give rise to K-tesseracts.

11. See also other objections against Buchler’s claim by other authors already
cited in our article (e.g. Klumpenhouwer 2007 and Stoecker 2007).
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ABSTRACT

Many Western art music composers have taken advantage of tabulated data for
nourishing their creative practices, particularly since the early twentieth century.
The arrival of atonality and serial techniques was crucial to this shift. Among
the authors dealing with these kinds of tables, some have considered the singular
mathematical properties of magic squares. This paper focuses on a particular
case study in this sense: Philippe Manoury’s Third String Quartet, entitled
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Melencolia. We mainly analyse mainly several strategies conceived by the French
composer – through his own sketches – in order to manipulate pitches and
pitch-classes over time. For that purpose, we take advantage of Klumpenhouwer
networks as a way to settle wide and dense isographic relationships. Our hyper-
K-nets sometimes reach a total of 32 arrows that allow geometrical arrangements
as tesseracts in which their different dimensions cluster related families of
isographies. In doing so, we aim to provide an instructive example of how
to contextualise K-nets and isographies as powerful tools for the analysis of
compositional practices.
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